
Handling Java's Abrupt Termination in aSequent Calulus for Dynami LogiBernhard Bekert and Bettina SasseUniversity of KarlsruheInstitute for Logi, Complexity and Dedution SystemsD-76128 Karlsruhe, Germanybekert�ira.uka.de, sasse�ira.uka.deAbstrat. In Java, the exeution of a statement an terminate abruptly (besidesterminating normally and terminating not at all). Abrupt termination either leads to arediretion of the ontrol ow after whih the program exeution resumes (for exampleif an exeption is aught), or the whole program terminates abruptly (if an exeptionis not aught). Within the KeY projet, a Dynami Logi for Java Card has beendeveloped, as well as a sequent alulus for that logi, whih an be used to verify JavaCard programs. In this paper, we desribe how abrupt termination is handled in thatalulus. The ideas behind the rules we present an easily be adapted to other programlogis (in partiular Hoare logi) for Java.1 IntrodutionIn Java, the exeution of a statement an terminate abruptly (besides terminatingnormally and terminating not at all). Possible reasons for an abrupt termination arefor instane (a) that an exeption has been thrown, (b) that a loop or a single loopiteration is terminated with the break resp. the ontinue statement, and () that theexeution of a method is terminated with the return statement. Abrupt terminationof a statement either leads to a rediretion of the ontrol ow after whih the programexeution resumes (for example if an exeption is aught), or the whole programterminates abruptly (if an exeption is not aught).In [2℄ a Dynami Logi for Java Card (Java Card DL) has been presented,as well as the basi rules of a sequent alulus for Java Card DL that an be usedto verify Java Card programs. In this paper, we give a detailed desription of howabrupt termination is handled in that alulus. The basi priniples of the rules wepresent an easily be adapted to other program logis (in partiular Hoare logi) forJava.The basi idea of our approah, whih helps to keep the alulus's rules simple,is to give an abruptly terminating statement the same semantis as that of a non-terminating statement. As usual in Dynami Logis, the semantis of a program isa partial funtions between states. Neither the fat that an abrupt termination hasourred nor the reason for the abrupt termination are made part of the states. Thus,to de�ne the semantis of DL formulas, we do not need to provide additional onstrutsfor handling abrupt termination. Nevertheless, our alulus an handle programs thatmake use of abrupt termination to rediret ontrol ow during exeution.We work aording to the priniple that the program states should not inludeinformation about ontrol ow: they do not ontain a program ounter, nor the valueof the ondition in an if-else statement that has just been evaluated, nor the reasonfor the termination of a statement.

6 B. Bekert and B. SasseA di�erent approah is used in [3℄, where the semantis of a program is not afuntion between states but from states to pairs onsisting of a state and a reasonfor termination, making the reason for ompletion e�etively part of the �nal stateof a statement. Other related work inludes [6℄ and [8℄, where program logis for(subsets of) Java are desribed.The struture of this paper is as follows: In Setion 2, we shortly desribe thebakground and motivation of our work. Syntax and semantis of Java Card DL areintrodued in Setion 3; for details, the reader is referred to [2℄. The rules for handlingabrupt termination are given in Setion 4. In Setion 5, we present an example forthe appliation of these rules.2 BakgroundThe work reported here has been arried out as part of the KeY projet [1℄. Thegoal of KeY is to enhane a ommerial CASE tool with funtionality for formalspei�ation and dedutive veri�ation and, thus, to integrate formal methods intoreal-world software development proesses. Aordingly, the design priniples for thesoftware veri�ation omponent of the KeY system are:{ The programs that are veri�ed should be written in a \real" objet-oriented pro-gramming language (we deided to use Java Card).{ The logial formalism should be as easy as possible to use for software developers(who do not have years of training in formal methods).Sine Java Card is a \real" objet-oriented language, it has features whih arediÆult to handle in a software veri�ation system, suh as dynami binding, aliasing,objet initialisation, and|the topi of this paper|abrupt termination. On the otherhand, Java Card laks some ruial ompliations of the full Java language suh asthreads and dynami loading of lasses. Moreover, Java smart ards are an extremelysuitable target for software veri�ation, as the appliations are typially seurity-ri-tial but rather small.We use an instane of Dynami Logi (DL) [5℄|whih an be seen as an exten-sion of Hoare logi|as the logial basis of the KeY system's software veri�ationomponent, beause dedution in DL is based on symboli program exeution andsimple program transformations and is lose to a programmer's understanding ofJava Card. Also, DL has suessfully been applied in pratie to verify softwaresystems of onsiderable size. It is used in the software veri�ation systems KIV [7℄and VSE [4℄ (for a programming language that is not objet-oriented).3 Dynami Logi for Java Card3.1 OverviewDynami Logi an be seen as a modal prediate logi with a modality hp i for everyprogram p (we allow p to be any sequene of legal Java Card statements); hp irefers to the suessor worlds (alled states in the DL framework) that are reahableby running the program p . In standard DL there an be several of these states (worlds)beause the programs an be non-deterministi; but here, sine Java Card programsare deterministi, there is exatly one suh world (if p terminates) or there is no

Handling Java's Abrupt Termination in a Sequent Calulus for Dynami Logi 7suh world (if p does not terminate). The formula hp i� expresses that the program pterminates in a state in whih � holds. A formula �! hp i is valid if for every state ssatisfying the pre-ondition �, a run of the program p starting in s terminates, andin the terminating state the post-ondition holds.Thus, the formula �! hp i is similar to the Hoare triple f�gp f g. But in on-trast to Hoare logi, the set of formulas of DL is losed under the usual logial opera-tors: In Hoare logi, the formulas � and are pure �rst-order formulas. DL allows toinvolve programs in the desriptions � resp. of states. For example, using a program,it is easy to speify that a data struture is not yli, whih is impossible in pure�rst-order logi. Beause all Java onstruts are available in DL for the desription ofstates (inluding while loops and reursion) it is not neessary to de�ne an abstratdata type state and to represent states as terms of that type; instead DL formulasan be used to give a (partial) desription of states, whih is a more exible tehniqueand allows to onentrate on the relevant properties of a state.3.2 Syntax of Java Card DLAs said above, a dynami logi is onstruted by extending some non-dynami logiwith modal operators of the form hp i. The non-dynami base logi of our DL is atyped �rst-order prediate logi. We do not desribe in detail what the types of ourlogi are (basially they are idential with the Java types) nor how exatly terms andformulas are built, as this is not relevant for the handling of abrupt termination. Thede�nitions an be found in [2℄. Note, that terms (whih we often all \logial terms"in the following) are di�erent from Java expressions; they never have side e�ets.In order to redue the omplexity of the programs ourring in DL formulas, weintrodue the notion of a program ontext. The ontext an onsist of any legal JavaCard program, i.e., it is a sequene of lass and interfae de�nitions. Syntax andsemantis of DL formulas are then de�ned with respet to a given ontext; and theprograms in DL formulas are assumed not to ontain lass de�nitions.A ontext must not ontain any onstruts that lead to a ompile-time error orthat are not available in Java Card.1The programs in DL formulas are basially exeutable Java Card ode; as saidabove, they must not ontain lass de�nitions but an only use lasses de�ned inthe program ontext. We introdued two additional onstruts that are not availablein plain Java Card but are neessary for ertain rule appliations: Programs anontain a speial onstrut for method invoation (see below), and they an ontainlogial terms. These extensions are not used in the input formulas, they our onlywithin proofs, i.e., we prove properties of pure Java Card programs.Example 1. The statement i=0; may be used as a program in a DL formula althoughi is not delared as a loal variable.The statement break l; is not a legal program beause suh a statement is onlyallowed to our inside a blok labelled with l. Aordingly, l:{break l;} is a legalprogram and an be used in a DL formula.1 An additional restrition is that a program ontext must not ontain inner lasses (this restritionis \harmless" beause inner lasses an be removed with a struture-preserving program transfor-mation and are rarely used in Java Card anyway).

8 B. Bekert and B. SasseThe purpose of our �rst extension is the handling of method alls. Methods areinvoked by syntatially replaing the all by the method's implementation. To handlethe return statement in the right way, it is neessary (a) to reord the objet �eldor variable x that the result is to be assigned to, (b) to reord the old value oldof this, and () to mark the boundaries of the implementation prog when it issubstituted for the method all. For that purpose, we allow statements of the formall(old,x){prog} to our in DL programs.The seond extension is to integrate logial terms in programs ontained in DLformulas (not in the program ontext). This is neessary to be able to replae Javaexpressions with possible side e�ets by a logial term of the same type. However,sine the value of logial terms annot and must not be hanged by a program, alogial term an only be used in positions where a final loal variable ould be usedaording to the Java language spei�ation (the value of loal variables that aredelared final annot be hanged either). In partiular, logial terms annot be usedas the left hand side of an assignment.3.3 Semantis of Java Card DLThe semantis of a program p is a state transition, i.e., it assigns to eah state s theset of all states that an be reahed by running p starting in s. Sine Java Cardis deterministi, that set either ontains exatly one state (if p terminates normally)or is empty (if p does not terminate or terminates abruptly). The set of states ofa model must be losed under the reahability relation for all programs p , i.e., allreahable states must exist in a model (other models are not onsidered).The semantis of a logial term t ourring in a program is the same as that of aJava expression whose evaluation is free of side-e�ets and gives the same value as t.For formulas � that do not ontain programs, the notion of � being satis�ed by astate is de�ned as usual in �rst-order logi. A formula hp i� is satis�ed by a state sif the program p, when started in s, terminates normally in a state s0 in whih � issatis�ed. A formula is satis�ed by a model M , if it is satis�ed by one of the statesof M . A formula is valid in a model M if it is satis�ed by all states of M ; and aformula is valid if it is valid in all models.As mentioned above, we onsider programs that terminate abruptly to be non-terminating. Thus, for example, hthrow x;i� is unsatis�able for all �. Nevertheless,it is possible to express and (if true) prove the fat that a program p terminatesabruptly. For example, the formulae := null ! htry{p}ath(Exeption e){}i(: (e := null))is true in a state s if and only if the program p , when started in s, terminates abruptlyby throwing an exeption (as otherwise no objet is bound to e).Sequents are notated following the sheme�1; : : : ; m ` 1; : : : ; n ;whih has the same semantis as the formula(8x1) � � � (8xk)((�1 ^ : : : ^ m)! (1 _ : : : _ n)) ;where x1; : : : ; xk are the free variables of the sequent.

Handling Java's Abrupt Termination in a Sequent Calulus for Dynami Logi 94 Sequent Calulus Rules for Handling Abrupt Termination4.1 NotationThe rules of our alulus operate on the �rst ative ommand p of a program �p!. Thenon-ative pre�x � onsists of an arbitrary sequene of opening braes \{", labels,beginnings \try{" of try-ath-finally bloks, and beginnings \all(: : :){" ofmethod invoation bloks. The pre�x is needed to keep trak of the bloks that the(�rst) ative ommand is part of, suh that the abruptly terminating statementsthrow, return, break, and ontinue an be handled appropriately.2 The post�x !denotes the \rest" of the program, i.e., everything exept the non-ative pre�x andthe part of the program the rule operates on. For example, if a rule is applied to thefollowing Java blok operating on its �rst ative ommand i=0;, then the non-ativepre�x � and the \rest" ! are the marked parts of the blok:l:{try{| {z }� i=0; j=0; }finally{ k=0; }}| {z }!4.2 Loop RulesDue to spae restritions, we present only one spei� rule for while loops to demon-strate the properties of loop rules. for and do-while loops are handled analogously.The following rule \unwinds" while loops. Its appliation is the prerequisite forsymbolially exeuting the loop body. These \unwind" rules allow to handle whileloops if used together with indution shemata for the primitive and the user de�nedtypes (see the example in Setion 5).� ` (h� if()l0:{l00:{p0} l1:� � � ln:while(){p }} !i�)� ` (h� l1:� � � ln:while(){p } !i�) (R1)where{ l0 and l00 are new labels,{ p0 is the result of (simultaneously) replaing in p(a) every break li (for 1 � i � n) and every break (with no label) that has thewhile loop as its target by break l0, and(b) every ontinue li (for 1 � i � n) and every ontinue (with no label) thathas the while loop as its target by break l00.3The list l1:; : : : ;ln: usually has only one element or is empty, but in general a loopan have more than one label.In the \unwound" instane p0 of the loop body p , the label l0 is the new target forbreak statements and l00 is the new target for ontinue statements, whih both had2 In DL versions for simple arti�ial programming languages, where no pre�xes are needed, anyformula of the form hp q i� an be replaed by hp ihq i�. In our alulus, splitting of h�pq!i� intoh�p ihq!i� is not possible (unless the pre�x � is empty) beause �p is not a valid program; andthe formula h�p!ih�q!i� annot be used either beause its semantis is in general di�erent fromthat of h�pq!i�.3 The target of a break or ontinue statement with no label is the loop that immediately enlosesit.

10 B. Bekert and B. Sassethe while loop as target before. This results in the desired behaviour: break abruptlyterminates the whole loop, while ontinue abruptly terminates the urrent instaneof the loop body.A ontinue with or without label is never handled by a rule diretly, beause itan only our in loops, where it is always transformed into a break by the loop rules.4.3 Rules for the Abruptly Terminating StatementsPossible Combinations of Pre�x and Abruptly Terminating Statement. Inthe following, we present rules for ombinations of pre�x type (beginning of a blok,method invoation or try) and abruptly terminating statement (break, return orthrow). Due to restritions of the language spei�ation, the ombination methodinvoation/break does not our. Also, swith statements, whih may ontain abreak, are not onsidered here; they are transformed into a sequene of if statements.Evaluation of Arguments. The arguments ex and val of statements throw exresp. return val must already be evaluated (they must be logial terms) before theappropriate rule for redireting the ontrol ow an be applied to the abruptly termi-nating statement. Otherwise, a rule suh as the following (rule (R2)) has to be used�rst, whih then allows the appliation of other rules that evaluate the expression ex .� ` h� {x =ex ; throw x ;} !i�� ` h� throw ex ; !i� (R2)where x is a new variable of the same type as the expression ex . Sine, in this paperwe fous on the handling of abrupt termination here and not on the evaluation ofexpressions, we assume in the following that this has already been done.We also do not onsider the problem of unde�ned expressions in this paper, whoseevaluation results in an exeption being thrown (e.g., the expression o.a if the valueof o is null). If an expression e ours that may be unde�ned, the rules have a furtherpremiss � ` isdef (e) in the full version of the alulus.Rule for Method Call/return. The rule for this ombination symbolially exeutesevery step the virtual mahine does when a method invoation is terminated: Thereturn value is assigned to the loation reorded in the method all pre�x and thisis restored to the value it had before method invoation.� ` h� x =y ; this=old; !i�� ` h� all(old, x):{return y ; pgm }!i� (R3)In pure Java it is not possible to expliitly assign a value to this. Our assignmentrule, however, an handle suh a statement and produes the desired e�et. The \rest"program pgm of the method body, whih is not exeuted, may be empty.Rule for Method Call/throw. In this ase, the method is terminated and thisis restored to its old value, but no return value is assigned. The throw statement

Handling Java's Abrupt Termination in a Sequent Calulus for Dynami Logi 11remains unhanged (i.e., the exeption is handed up to the invoking program).� ` h� this=old; throw ex ; !i�� ` h� method all(old, x):{throw ex ; pgm }!i� (R4)Again, the \rest" pgm of the method body, whih is not exeuted, may be empty.Rules for try/throw. The following rules allow to handle try-ath-finally bloksand the throw statement. These are simpli�ed versions of the atual rules that applyto the ase where there is exatly one ath lause and one finally lause.� ` instaneof (ex ; T) � ` (h� try{e=ex ;q }finally{r} !i�� ` (h� try{throw ex; p }ath(T e){q }finally{r} !i�) (R5)� ` :instaneof (ex ; T) � ` (h� r ; throw ex ; !i�)� ` (h� try{throw ex ; p }ath(T e){q }finally{r} !i�) (R6)Rule (R5) applies if an exeption ex is thrown that is an instane of exeptionlass T , i.e., the exeption is aught; otherwise, if the exeption is not aught, rule (R6)applies.Rules for try/break and try/return. A return or a break statement within atry-ath-finally statement auses the immediate exeution of the finally blok.Afterwards the try statement terminates abnormally with the break resp. the returnstatement (a di�erent abruptly terminating statement in the finally blok takespreedene). This behaviour is simulated by the following two rules:� ` h� r break l ; !i�� ` h� try{break l ; p }ath(T ex){q }finally{r} !i� (R7)� ` h� r return v ; !i�� ` h� try{return v ; p }ath(T ex){q }finally{r} !i� (R8)Rules for blok/break, blok/return, and blok/throw. Rules (R9) and (R10)apply to bloks whih are terminated by a break statement without label resp. witha label l mathing one of the labels l 1; : : : ; l k of the blok (k � 0).� ` h� !i�� ` h� l 1: � � � l k:{break; pgm } !i� (R9)� ` h� !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 2 fl 1; : : : ; l kg (R10)

12 B. Bekert and B. SasseThe following rules handle labelled and unlabelled bloks that are abruptly ter-minated by a break statement with a label l not mathing any of the labels of theblok (Rule (R11)), or by a return or throw statement (Rules (R12) resp. (R13)).� ` h� break l ; !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 62 fl 1; : : : ; l kg (R11)� ` h� return v ; !i�� ` h� l 1: � � � l k:{return v ; pgm } !i� (R12)� ` h� throw e ; !i�� ` h� l 1: � � � l k:{throw e ; pgm } !i� (R13)In all the rules above, the program pgm (that is not exeuted) may be empty.Rules for Empty Bloks. Rule (R14) applies to empty try bloks, whih terminatenormally. There are similar rules for empty bloks and empty method invoations.� ` (h� r !i�)� ` (h� try{}ath(T e){q }finally{r} !i�) (R14)5 ExampleAs an example, we use the alulus presented in the previous setion to verify that,if the programwhile (true) {if (i==10) break;i++;}is started in a state in whih the value of the variable i is between 0 and 10, then itterminates normally in a state in whih the value of i is 10.4 That is, we prove thatthe sequene 0 � i ^ i � 10 ` hpwhileii := 10 (1)is valid, where pwhile is an abbreviation for the above while loop. Instead of proving (1)diretly, we �rst use indution to derive the sequene` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)as a lemma. It basially expresses the same as (1), the di�erene is that its formallows a proof by indution on n. The introdution of this lemma is the only step inthe proof where an intuition for what the Java Card program pwhile atually doesis needed and where a veri�ation tool may require user interation.4 This example program was presented in [3℄.

Handling Java's Abrupt Termination in a Sequent Calulus for Dynami Logi 13

` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)indutionBase ase:n := 0i := 10 ` hpwhileii := 10 (3)while (R1)i := 10 `hif(true) l1:{l2:{ : : : }ii := 10 (4)ifi := 10 `hl1:{l2:{if (i==10) break l1; : : : }ii := 10ifi := 10 `hl1:{l2:{break l1; i++;}pwhile}ii := 10 (5)break (R11)i := 10 `hl1:{break l1; i++; pwhile}ii := 10 (6)break (R10)i := 10 ` hii := 10 (7)empty prog.i := 10 ` i := 10 (8)

Step ase:n! n+ 1n � 9; i := 9� n ` hpwhileii := 10while (R1)n � 9; i := 9� n `hif(true) l1:{l2:{ : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{if (i==10) : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{i++;}pwhile}ii := 10++ operatorn � 9; i := 10� n `hl1:{l2:{} pwhile}ii := 10empty blokn � 9; i := 10� n `hpwhileii := 10indution hypothesis

Fig. 1. Struture of the proof for sequent (1).The derivation of (2) is shown shematially in Figure 1. In the following, wedesribe the base ase n = 0 of the indution in detail. The step ase is similar (themain di�erene is that it loses with an appliation of the indution hypothesis whilethe base ase loses with an axiomati sequent).The �rst sequent whih appears in the base ase after applying the indution ruleand some simpli�ations isi := 10 ` hwhile (true) {if (i==10) break; i++;}ii := 10 (3)An appliation of the rule for while loops (R1) results in the new proof obligationi := 10 `hif (true) l1:{l2:{if (i==10) break l1; i++;} pwhile}ii := 10 (4)Here, two new labels are introdued: l1 is the target for break statements in the loopbody and l2 is the target for ontinue statements (the latter does not our in thisexample).The next step is to use the rule for if statements twie. After the seond appli-ation, we get the sequenti := 10 ` hl1:{l2:{break l1; i++} pwhile}ii := 10 (5)

14 B. Bekert and B. Sassein whih the next exeutable statement is break l1. Now, the rule for labelled breakstatements in a blok with a non-mathing label (R11) has to be applied, whiheliminates the blok labelled with l2:i := 10 ` hl1:{break l1; pwhile}ii := 10 (6)Then, the rule for labelled break statements in a blok with a mathing label (R10)is used. The result is i := 10 ` hi(i := 10) (7)This simpli�es with the rule for the empty program toi := 10 ` i := 10 (8)and an thus be shown to be valid.After the lemma (2) has been proved by indution, it an be used to prove theoriginal proof obligation (1). First, we use a quanti�er rule to instantiate n with10� i. The result is0 � i ^ i � 10 ` (10� i � 10 ^ i := 10� (i� 10)) ! (hpwhileii := 10)whih an be simpli�ed to0 � i ^ i � 10 ^ i := i ` (hpwhileii := 10) (9)And, sine (9) is derivable, the original proof obligation (1) is derivable as well, beausethe trivial equality i := i an be omitted.Referenes1. Wolfgang Ahrendt, Thomas Baar, Bernhard Bekert, Martin Giese, Elmar Habermalz, ReinerH�ahnle, Wolfram Menzel, and Peter H. Shmitt. The KeY approah: Integrating objet orienteddesign and formal veri�ation. In M. Ojeda-Aiego, I. P. de Guzman, G. Brewka, and L. M.Pereira, editors, Proeedings, Logis in Arti�ial Intelligene (JELIA), Malaga, Spain, LNCS 1919.Springer, 2000.2. Bernhard Bekert. A Dynami Logi for the formal veri�ation of Java Card programs. InProeedings, Java Card Workshop (JCW), Cannes, Frane, LNCS 2014. Springer, 2001. To appear.Available at i12www.ira.uka.de/~key.3. Marieke Huisman and Bart Jaobs. Java program veri�ation via a Hoare logi with abrupttermination. In Proeedings, Fundamental Approahes to Software Engineering (FASE), Berlin,Germany, LNCS 1783. Springer, 2000.4. Dieter Hutter, Bruno Langenstein, Claus Sengler, J�org H. Siekmann, and Werner Stephan. De-dution in the Veri�ation Support Environment (VSE). In M.-C. Gaudel and J. Woodok,editors, Proeedings, International Symposium of Formal Methods Europe (FME), Oxford, UK,LNCS 1051. Springer, 1996.5. Dexter Kozen and Jerzy Tiuryn. Logi of programs. In J. van Leeuwen, editor, Handbook ofTheoretial Computer Siene, volume B: Formal Models and Semantis, hapter 14, pages 789{840. Elsevier, Amsterdam, 1990.6. Arnd Poetzsh-He�ter and Peter M�uller. A programming logi for sequential Java. In S. D.Swierstra, editor, Proeedings, Programming Languages and Systems (ESOP), Amsterdam, TheNetherlands, LNCS 1576, pages 162{176. Springer, 1999.7. Wolfgang Reif. The KIV-approah to software veri�ation. In M. Broy and S. J�ahnihen, editors,KORSO: Methods, Languages, and Tools for the Constrution of Corret Software { Final Report,LNCS 1009. Springer, 1995.8. Kurt Stenzel. Veri�ation of Java Card programs. Tehnial Report 2001-5, Institut f�ur Informatik,Universit�at Augsburg, 2001.

